火把节是什么节日| 什么原因引起尿酸高| 路亚竿什么品牌好| 梦见婴儿是什么预兆| 歪果仁是什么意思| 什么是童子| 本虚标实是什么意思| 国保大队是干什么的| 女人梦见猪是什么预兆| 什么叫做脂肪肝| 体型最大的恐龙是什么| 胎盘植入是什么意思| 排班是什么意思| 金是什么颜色| 1月份是什么星座| 鹅口疮用什么药效果好| 为什么会得肺结核| 头发痒是什么原因| 转氨酶是什么| 12月29号是什么星座| 贤良淑德后半句是什么| 什么叫资本运作| 开什么店最赚钱| 手上长小水泡是什么原因| 627是什么意思| 2.4什么星座| 高血压吃什么水果好| 什么情况需要打破伤风针| 六一年属什么生肖| 犒劳自己是什么意思| rh(d)血型阳性是什么意思| 处女座上升星座是什么| 真菌感染有什么症状| 为什么今年夏天特别热| 手上长水泡痒用什么药| 龙生九子下一句是什么| 启攒是什么意思| 牛仔外套搭配什么裤子好看| gpa什么意思| bid医学上是什么意思| 弱精症有什么症状表现| 6月6日是什么日子| 放屁不臭是什么原因| opi是什么意思| 巨细胞病毒igm阳性是什么意思| wonderland什么意思| 车顶放饮料是什么意思| 肌张力高是什么意思| 肝火是什么原因引起的| 职级是什么意思| 女人小便出血是什么原因| 精氨酸是什么| 灯火葳蕤是什么意思| 66年属什么| 日语八嘎是什么意思| 空气炸锅可以做什么| 贵州菜属于什么菜系| 墓志铭什么意思| 魔芋长什么样子| 皮疹和湿疹有什么区别| 五毒为什么没有蜘蛛| 4月18日什么星座| 致字五行属什么| 拮抗剂是什么| 金字旁加巨念什么| 知了猴什么时候出来| 疱疹挂什么科| 猫贫血吃什么补血最快| 氟骨症是什么病| 羊肉炖什么补肾壮阳| 漂洗是什么意思| 急性鼻窦炎吃什么药| 坐阵是什么意思| 郁郁寡欢的意思是什么| 尿中有泡沫是什么原因| 血糖高能喝什么粥| 狐惑病是什么病| 笑面虎比喻什么样的人| 尿路感染是什么原因引起的| 儿童发育过早应该挂什么科| 鼻子干痒是什么原因| 呼吸道感染吃什么药| 欲言又止什么意思| 祖字五行属什么| 码子是什么意思| 音序是什么| 肠胃炎可以吃什么| 补体c4偏低是什么意思| 新的五行属性是什么| ctc是什么| 金乐什么字| 破除是什么意思| 脚心痒是什么预兆| 羊下面是什么生肖| 什么牌子的空调好用又省电| 蚊子为什么吸血| 黯淡是什么意思| 连城诀为什么不火| 锻练与锻炼有什么区别| 平方和是什么| 吃了什么药不能喝酒| 1971年是什么命| 老年人喝什么奶粉好| 梦见玻璃碎了什么意思| 鼻塞一直不好什么原因| 海洋中最多的生物是什么| 膝关节疼是什么原因| 脸霜什么牌子的好| 铁罗汉是什么茶| 郫县豆瓣酱能做什么菜| 9月26号是什么星座| 经常口腔溃疡是什么原因引起的| 什么鱼蛋白质含量高| 为什么尿是红色的| 父亲节送爸爸什么礼物| nt是什么检查| 骨盆前倾挂什么科| 鼻子旁边的痣代表什么| 为什么有蟑螂| 爬山有什么好处| 筋膜炎挂什么科| 人为什么要火化| pe和pb是什么意思| 血冲脑是什么原因引起| 吃什么清肺养肺| 幽门螺杆菌什么症状| 为什么会得焦虑症| 氧分压是什么意思| 安排是什么意思| pct是什么意思| 半身不遂的前兆是什么症状| 沙棘原浆什么人不能喝| 宫颈纳囊多发是什么意思| 古灵精怪什么意思| 中暑什么感觉| 水灵灵是什么意思| 手术后拆线挂什么科| 叶酸片什么时候吃| 梦到打死蛇是什么意思| 蝴蝶花长什么样| 什么动物寿命最短| zd是什么意思| 阿波罗是什么神| 劲旅是什么意思| 男人嘴角有痣代表什么| 我是小姨的什么人| p53野生型是什么意思| tsh是什么意思| 升是什么意思| 孕晚期呕吐是什么原因| 羊肉不能和什么食物一起吃| 泡菜生花用什么方法可以去掉| 阴道有灼热感是什么原因| 卫校有什么专业| hcg是什么| 梦见小婴儿是什么意思| 胃疼买什么药| 脂肪肝轻度是什么意思| 外阴干裂用什么药| hbv是什么意思| 夜盲症缺什么维生素| 手抽筋吃什么药| 反流性食管炎能吃什么水果| 腿为什么肿| pr间期缩短是什么意思| 头发长得慢是什么原因| 刀枪不入是什么生肖| 3D硬金是什么意思| 钓鱼执法是什么意思| 经期头疼是什么原因怎么办| 吃完头孢不能吃什么| 阑尾粪石是什么意思| 靶器官是什么意思| 嘌呤是什么东西| 末法时代是什么意思| 殿试是什么意思| 梦到狗是什么征兆| 银梳子梳头有什么好处| 黑加仑是什么水果| 吃什么对痔疮好得快| 尿血是什么症状| 咖啡喝多了有什么危害| 刷牙时牙龈出血是什么原因| 转学需要什么手续| 靛青色是什么颜色| 颇负什么什么| 右手有点麻是什么原因| 吃什么孕酮值可以增高| 焦虑症吃什么中药| 一直打嗝什么原因| 吃什么东西能变白| 宰相相当于现在什么官| 心季吃什么药| 爱情是个什么东西| 吃什么提高代谢| 梦见老鼠是什么预兆| 父母有刑是什么意思| 幽门螺杆菌怕什么食物| 胃食管反流病是什么原因造成的| 脱脂牛奶是什么意思| 两个百字念什么| 萎缩性阴道炎用什么药| 相恋纪念日送什么礼物| 回奶吃什么药| 同房痛什么原因引起的| 空气湿度是什么意思| 地道战在河北什么地方| 男人吃生蚝补什么| 女人肾虚吃什么补回来| 盐袋子热敷有什么好处| 阉割是什么意思| 十月十二号是什么星座| 岁月静好浅笑安然什么意思| 做什么生意最赚钱| 去脂体重什么意思| 久站腿肿是什么原因引起的| 泥鳅不能和什么一起吃| 喉咙发炎不能吃什么食物| 缺锌有什么症状| 丝瓜不可以和什么一起吃| 宝宝睡觉出汗是什么原因| 30岁用什么眼霜比较好| 孕妇吃香蕉对胎儿有什么好处| 旨在是什么意思| 园字五行属什么| 湖北古代叫什么| 鼻塞打喷嚏是什么原因| 114514是什么梗| 嘴上起泡是什么原因| 奶奶的妈妈叫什么| 一直以来是什么意思| 纪念什么意思| 白斑有什么症状图片| 包皮发炎红肿用什么药| 七一年属什么生肖| 生肖羊生什么生肖最好| 寒风吹起细雨迷离是什么歌| 肺结核吃什么食物好| prc是什么意思| hip是什么意思| 印度总统叫什么名字| u什么意思| 为什么胆固醇高| 我是小姨的什么人| 八月一日是什么节日| 上海古代叫什么| 什么的菊花| 狮子座的幸运色是什么| 7月13日是什么节日| 霍乱是什么| 晨尿茶色是什么原因| 腰椎退行性变是什么病| 颢读什么| 梦见吃酒席是什么预兆| 脑萎缩吃什么药| 中暑喝什么水| 梦见被蛇追着咬是什么意思| 1995年属猪的是什么命| 红豆泥是什么意思| 痰多是什么原因造成的| 牙痛吃什么药最管用| 梦见请客吃饭是什么意思| 毒瘾发作是什么感觉| 什么样的人能镇住凶宅| 百度
The Moving Picture Experts Group

山东省两宿舍16名女生 全考上名校研究生

Standard: 
Part number: 
10
Activity status: 
Open
Technologies: 

MPEG-4 Advanced Video Coding

百度 此次活动让各贫困户、五保户、残疾人民众感受到来自党和政府及社会各界人士的温暖,让大家过一个欢欢喜喜,快乐圆满的春节。

MPEG doc#: N7314
Date: July 2005
Authors:?Jens-Rainer Ohm, Gary Sullivan

1???????? Introduction

The demand for ever-increasing compression performance has urged the definition of a new part of the MPEG-4 standard, ISO/IEC 14496-10: 'Coding of Audiovisual Objects – Part 10: Advanced Video Coding', which is identical technical content with ITU-T Rec. H.264. The development of AVC was performed by the Joint Video Team (JVT), which consists of members of both MPEG and the ITU-T Video Coding Experts Group.

2???????? Technical Solution

The basic approach of AVC is block-based hybrid video coding (block MC prediction + 2D block transform). The most relevant tools and elements extending over other video compression standards are as follows:

  • Motion compensation using variable block sizes of size 16x16, 8x8, 16x8, 8x16, 8x8, 8x4, 4x8, or 4x4, using motion vectors encoded by hierarchical prediction starting at the 16x16 macroblock level;
  • Motion compensation of the luma component sample array is performed by quarter-sample accuracy, using high-quality interpolation filters;
  • Usage of an integer transform of block size 4x4 or 8x8. The transform design is not exactly a DCT, but could be interpreted as an integer approximation thereof. For the entire building block of transform and quantization, implementation by 16-bit integer arithmetic precision is possible both for encoding and decoding. In contrast to previous standards based on the DCT, there is no dependency on a floating point implementation, such that no drift between encoder and decoder picture representations can occur in normal (error-free) operation.
  • Intra-picture coding is performed by first predicting the entire block from boundary samples of adjacent blocks. Prediction is possible for 4x4, 8x8 and 16x16 blocks, where for the 16x16 and 8x8 cases only horizontal, vertical, DC, and planar prediction is allowed. In the 4x4 block case, nine prediction types are supported (DC and nine directional spatial prediction modes).
  • An adaptive de-blocking filter is applied in the prediction loop. The adaptation process of the filter is non-linear, with the lowpass strength of the filter steered by the quantization parameter (step size) and by syntax under the control of the encoder. Further parameters considered in the filter selection are the difference between motion vectors at the respective block edges, the coding mode used (e.g. stronger filtering is made for intra mode), the presence of coded coefficients and the differences between reconstruction values across the block boundaries.
  • Multiple reference picture prediction allows to define references for prediction of any macroblock from one of up to F previously decoded pictures; the number F itself depends on the profile/level definition, which specifies the maximum amount of frame memory available in a decoder. Values around F=5 are typical when using the maximum picture size supported in the profile/level definition.
  • Instead of B-type, P-type, and I-type pictures, type definitions are made slice-wise, where a slice may, at maximum, cover an entire picture.
  • New types of switching slices (S-type slices, with SP and SI sub-types) allow controlled transition of the decoder memory state when stream switching is made.
  • The B-type slices are generalized compared to previous standards, denoted as bi-predictive instead of bi-directional. This in particular allows to define structures of prediction of individual regions from two previous or two subsequent pictures, provided that a causal processing order is observed. Furthermore, prediction of B-type slices from other B-type slices is possible, which allows implementation of a B-frame pyramid. Different weighting factors can be used for the reference frames in the B-prediction.
  • Two different entropy coding mechanisms are defined, one of which is Context-adaptive VLC (CAVLC), the other Context-adaptive Binary Arithmetic Coding (CABAC). Both are universally applicable to all elements of the code syntax, which is based on a systematic construction of variable-length code tables. By proper definition of the contexts, it is possible to exploit non-linear dependencies between the different elements to be encoded. CABAC is a coding method for binary signals, and a binarization of multi-level values such as transform coefficients or motion vectors must be performed before it can be applied; methods which can be used are unary codes or truncated unary codes?(VLCs consisting of '1' bits with a terminating zero), Exp-Golomb codes or fixed-length codes. Four different basic context models are defined, where the usage depends on the specific values to be encoded.
  • Additional error resilience mechanisms are defined, which are Flexible Macroblock Ordering (FMO – allowing macroblock interleaving), Arbitrary Slice Ordering?(ASO), data partitioning of motion vectors and other prediction information, and encoding of redundant pictures, which e.g. allows duplicate sending or re-transmission of important information.
  • Other methods known from previous standards, such as frame/field adaptive coding of interlaced material, direct mode for B-slice motion vector prediction, predictive coding of motion vectors at macroblock level etc. are implemented.
  • A Network Abstraction Layer (NAL) is defined for the purpose of simple interfacing of the video stream with different network transport mechanisms, e.g. for access unit definition, error control etc.

To achieve the highest possible compression performance and other goals of the project, it was necessary to sacrifice strict forward or backward compatibility with prior MPEG and ITU-T video coding standards.

The key improvements as compared to previous standards are made in the area of motion compensation, but in proper combination with the other elements. The loop filter provides a significant gain in subjective quality at low and very low data rates. State-of-the-art context-based entropy coding drives compression to the limits. The various degrees of freedom in mode selection, reference-frame selection, motion block-size selection, context initialization etc. will only provide significant improvement of compression performance when appropriate optimization decisions, in particular based on rate-distortion criteria, are made. Such elements have been included in the reference encoder software.

The combination of all different methods listed has led to a significant increase of the compression performance compared to previous standard solutions. Reduction of the bit rate at same quality level by up to 50% or more as compared to prior standards such as MPEG-2, H.263, MPEG-4 Part 2 Simple Profile, and MPEG-4 Part 2 Advanced Simple Profile have been reported.

The concept of profile and level definitions for decoder conformance points is also implemented in the AVC standard. Presently, the following profiles are defined:

  • Baseline profile: Constraint to usage of I- and P-type slices, no weighted prediction, no interlace coding tools, no CABAC, no slice data partitioning, some more specific constraints on the number of slice groups and levels to be used with this profile.
  • Extended profile. No CABAC, all error resilience tools used (including SP and SI slices), some more specific constraints imposed to the direct mode, number of slice groups and levels to be used with this profile.
  • Main profile: Only I-, P- and B-type slices, enhanced error resilience tools such as slice data partitioning, arbitrary slice order, multiple slice group per picture are disabled while more basic error resilience features such as slice resynchronization, NAL parameter set robustness, and constrained intra prediction are supported; some more specific constraints are made on levels to be used with this profile.
  • High profile. Extending Main profile, supporting integer transform of block size 8x8 (switchable), supporting 8x8 (filtered) intra prediction modes, encoder-customized frequency-specific inverse quantization scaling, and level definitions adjusted such that better alignment with typical HD picture formats is achieved.
  • High 10 profile. Extending High profile, supporting up to 10 bit amplitude resolution precision
  • High 4:2:2 profile. Extending High 10 profile, extending color sampling format into 4:2:2[1].
  • High 4:4:4 profile. Extending High 4:2:2 profile, extending color sampling format support to 4:4:4, supporting up to 12 bit amplitude resolution precision, supporting a residual color transform in the decoding process, and defining a transform bypass mode which allows efficient lossless coding.

A total of 5 major levels and 15 total levels (including sub-levels) is defined. Level restrictions relate to the maximum number of macroblocks per second, maximum number of macroblocks per picture, maximum decoded picture buffer size (imposing constraints on multiframe prediction), maximum bit rate, maximum coded picture buffer size and vertical motion vector ranges. These parameters can be mapped to a model of a Hypothetical Reference Decoder (HRD), which relates to buffer models and their timing behavior.

The text of the MPEG-4 AVC standard is common with ITU-T Rec. H.264. Currently, the third edition of the standard text is prepared for publication, which will contain the full set of specifications as described above.

3???????? Application areas

MPEG-4 AVC is expected to become widely used in a wide range of applications such as high-resolution video broadcast and storage, mobile video streaming (Internet and broadcast), and professional applications such as cinema content storage and transmission.

?

?

Scalable Video Coding

MPEG doc#: N9792
Date: April2008
Authors:?Jens-Rainer Ohm, Gary Sullivan

Introduction

Scalable Video Coding (SVC) was defined as an amendment over MPEG4-AVC, providing efficient scalable representation of video by flexible multi-dimensional resolution adaptation. The interrelationship and adaptation between transmission/storage and compression technology is highly simplified by this scalable video representation, giving support to various network and terminal capabilities and also giving significantly increased error robustness by very simple stream truncation. Unlike previous solutions, SVC provides a high degree of flexibility in terms of scalability dimensions (supporting various temporal/spatial resolutions, SNR/fidelity levels and global/local ROI access), while the penalty in compression performance, as compared to single-layer coding, is almost negligible. Extensive results on subjective viewing have been presented in [1]

Technical Solution

SVC is based on a layered representation with multiple dependencies. To achieve temporal scalability, the construction of frame hierarchies is essential, where those frames that are not used as references for prediction of layers that are still present can be skipped. An example of such a hierarchical prediction structure is given in Figure 1. The pictures marked as “B3” establish the set that would be removed to reduce the frame rate by a factor of 3, by removing “B2” the frame rate would further be reduced by a factor of 2 etc.

Figure 1. Example of hierarchical B prediction structure for temporal scalability.

The hierarchical prediction structure as shown in Figure 1 is not only useful to achieve the functionality of temporal scalability. Due to the establishment of finite prediction dependencies between the various frames, encoder/decoder drift problems are significantly reduced in cases where not the same information would be used for prediction on both sides due to bitstream scaling.

Figure 2. Hierarchical layer structure for spatial scalability

For the purpose of spatial scalability, the video is first downsampled to the required spatial resolution(s). The ratio between frame heights/widths of the respective resolutions does not need to be dyadic (factor of two). Moreover, configurations where the higher layer is 1080p and the lower layer is 720p are easily supported.

Encoding as well as decoding starts at the lowest resolution, where an AVC compatible “base layer” bitstream will typically be used. For the respective next-higher “enhancement layer”, three decoded component types are used for inter-layer prediction from the lower layer:

  • Up-sampled intra-coded macroblocks;
  • Motion and mode information (aligned/stretched according to image size ratios);
  • Up-sampled residual signal in case of inter-coded macroblocks.

The prediction from the lower layer is an additional mode which may not always be used. In extreme case, each of the spatial layers could still be encoded completely independently, e.g. when the predictions from past or future frames of the higher-resolution layer are better than the up-sampled result from the lower-resolution layer. The different possibilities of prediction dependencies for the case of two spatial resolutions are illustrated in Figure 3.

Figure 3. Example of prediction dependencies for the case of two spatial layers.

Quality scalability in SVC (also known as “SNR scalability”) can be seen as a simple case of spatial scalability, where the prediction dependencies are applied between pictures of same resolution, but different qualities. Typically, the next higher quality layer is operated by changing the AVC QP parameter by a value of 6, which maps into half quantizer step size.

Due to the nature of the information that is conveyed between the layers, it is in fact not necessary to run predictive decoder loops for the lower layers. Only information that is directly decodable, such as motion, mode, residual or intra information are conveyed to the next-higher layer. Therefore, the decoding process of SVC can be designated as single-loop decoding, which is in fact? not significantly more complex than conventional AVC single-layer decoding.

Network interfaces and compatibility at base layer

At the bitstream, packetization and network interfacing level, full compatibility is retained. SVC enhancement layer information is conveyed as a new NAL unit type which would be skipped by an existing AVC decoder, such that the base layer would still be decodable by such devices. Within the SVC NAL unit header, important information about the respective packet, such as its belonging to a certain layer of spatial, temporal and quality resolution is conveyed. This can easily be extracted by media-aware network elements to make a decision on whether the respective packet should be dropped.

The compatibility with existing devices is also retained by the profile structure defined for SVC. The definitions are as follows:

  • Scalable baseline profile, which builds on top of a baseline-profile base layer bitstream;
  • Scalable high profile, which builds on top of a high-profile base layer bitstream;
  • Scalable high intra profile, which builds on top of a high-profile base layer bitstream, but restricts the enhancement layer to intra-frame coding.

?

Multiview Video Coding
?

MPEG doc#: N9580
Date: January 2008
Authors: Aljoscha Smolic

Introduction

3D video (3DV) and free viewpoint video (FVV) are new types of visual media that expand the user’s experience beyond what is offered by 2D video. 3DV offers a 3D depth impression of the observed scenery, while FVV allows for an interactive selection of viewpoint and direction within a certain operating range.? A common element of 3DV and FVV systems is the use of multiple views of the same scene that are transmitted to the user.

Multiview Video Coding (MVC, ISO/IEC 14496-10:2008 Amendment 1) is an extension of the Advanced Video Coding (AVC) standard that provides efficient coding of such multiview video. The overall structure of MVC defining the interfaces is illustrated in the figure below. The encoder receives N temporally synchronized video streams and generates one bitstream. The decoder receives the bitstream, decodes and outputs the N video signals.

Multiview Video Coding (MVC)

Multiview video contains a large amount of inter-view statistical dependencies, since all cameras capture the same scene from different viewpoints. Therefore, combined temporal and inter-view prediction is the key for efficient MVC. As illustrated in the figure below a picture of a certain camera can not only be predicted from temporally related pictures of the same camera. Also pictures of neighboring cameras can be used for efficient prediction.

Temporal/inter-view prediction structure for MVC.

Application areas

  • 3D video
  • Free viewpoint video

?

Amendments

Other documents

男人喝藏红花有什么好处 1114是什么星座 emba是什么 零申报是什么意思 什么植物好养又适合放在室内
玉是什么结构的字 人总放屁是什么原因 cmv是什么病毒 尿蛋白2十吃什么药 冲代表什么生肖
爱出汗是什么原因 荔枝和什么吃会中毒 维生素b6有什么作用 胃胀气打嗝是什么原因 6代表什么
lop胎位是什么意思 墨染是什么意思 黑是什么生肖 母亲节送婆婆什么礼物 毛鸡蛋是什么
cordura是什么面料wzqsfys.com 233是什么意思hcv9jop7ns1r.cn 炖牛肉放什么容易烂hcv8jop1ns5r.cn 14年婚姻是什么婚hcv8jop0ns7r.cn primark是什么牌子hcv9jop3ns2r.cn
外阴痒用什么洗hcv8jop5ns2r.cn 肠化什么意思hcv8jop0ns1r.cn 夯实是什么意思hcv9jop5ns1r.cn 长疖子用什么药wzqsfys.com 为什么摩羯女颜值都高beikeqingting.com
边界是什么意思hcv7jop7ns4r.cn 什么样的男人不能嫁hcv9jop5ns5r.cn 是什么符号1949doufunao.com 宝宝病毒性感冒吃什么药效果好hcv9jop3ns7r.cn 现在什么年hcv9jop4ns1r.cn
揩油是什么意思hcv9jop3ns6r.cn 阴囊湿疹用什么药膏效果最好hcv8jop4ns7r.cn 率的部首是什么hcv9jop3ns3r.cn 嗯呢什么意思hcv8jop6ns4r.cn 慢性鼻炎用什么药hcv9jop2ns8r.cn
百度